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Fluorinated 4H-1,3-diazepines by reaction of difluorocarbene
with 2H-azirines
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Abstract—5,7-Diaryl-2-fluoro-4H-1,3-diazepines have been synthesized from 3-aryl-substituted 2H-azirines and difluorocarbene.
The reaction involves isomerization of azirinium ylide into a 2-aza-1,3-diene which undergoes [4+2]-cycloaddition with the starting
azirine followed by ring expansion and dehydrofluorination.
� 2005 Elsevier Ltd. All rights reserved.
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Scheme 1.
Structural features of 2H-azirines predetermine their high
reactivity and substantial synthetic potential.1–4 Not-
withstanding the fact that the chemistry of 2H-azirines
attracts much interest, their reactions with electrophilic
carbenes, leading to the formation of unusual strained
azomethine ylides, have scarcely been explored.5,6

Recently, we detected the formation of fluorine-substi-
tuted azirinium ylides in the reaction of 2H-azirines with
difluorocarbene via 1,3-dipolar cycloaddition.7,8 It was
established that the reactivity of these unstable inter-
mediates depends on the character of substitution in
azirinium ring. Ylides obtained from 2,3-disubstituted
and 2,2,3-trisubstituted azirines, both in the absence
and in the presence of a dipolarophile, undergo azirine
ring opening to form unstable azadienes, which are
hydrolyzed to stable isocyanates (Scheme 1). 3-Mono-
substituted azirinium ylides, unlike di- and trisubstituted
ylides, can enter 1,3-dipolar cycloadditions with elec-
tron-deficient alkynes, alkenes, and aldehydes and thus
present interest as synthetic blocks for preparing aziri-
nopyrrole, pyridine, and morpholine derivatives.7,8

In this work, we investigated the reaction of 3-aryl-2H-
azirines with difluorocarbene in the absence of effective
dipole traps and present the first results of the applica-
tion of azirinium ylides in the synthesis of fluorinated
4H-1,3-diazepines. Unlike fused 1,3-diazepines,9 mono-
cyclic 1,3-diazepines are poorly studied, though some
perhydro-derivatives have received considerable atten-
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tion recently as compounds with potential anti-AIDS
activity.10 It is known that a few reactions lead to
non-fused 1,3-diazepines: photolytic ring expansion of
2-azido- or tetrazolopyridines,11 reaction of 2H-azirines
with 1,2,4-triazine12 or 1,3-oxazine derivatives,13 and
reaction of diazirines with cyclobutadienes.14 These
new fluorinated 4H-1,3-diazepines are interesting as
potential bioactive compounds and useful synthetic
blocks.

In continuation of our investigations of 1,3-dipolar cyclo-
additions of azirinium ylides to multiple bonds, we
generated ylide 2a from 3-phenyl-2H-azirine 1a and
difluorocarbene in the presence of furfural in order to
obtain azirinooxazolidine 3a, or the ring expansion
product, 1,4-oxazin-3(4H)-one 4a (Scheme 2).7,8 Azirine
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Scheme 2. Reagents and conditions: CF2Br2, active lead, Bu4NBr, furfural, CH2Cl2, 40–45 �C, 6 h.
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1a is a readily available compound and was synthesized
from styrene in two steps in 63% yield.15 Difluorocar-
bene was generated in situ by the reduction of dibromo-
difluoromethane with active lead16 in the presence of
tetrabutylammonium bromide.17 However, contrary to
expectations, the reaction gave 4H-1,3-diazepine 5a in
41% yield. This product was isolated by treatment of a
fraction of the chromatographic eluate, whose Rf was
the same as that of furfural, with dry Et3N. Analogous
products 5b,c were obtained from azirines 1b,c. An addi-
tion product of ylide 2d to furfural, oxazine 4d,18 could
only be isolated in trace amounts when 4-methoxyphen-
yl-substituted azirine was used as the reactant.

The structures of compounds 5a–c were proved from
their IR, 1H and 13C NMR spectra,19 as well as from
chemical transformations. The 1H NMR spectra of
5a–c contain, along with aryl proton signals, a singlet
at d 4.08–4.13 ppm, assignable to the CH2 protons,
and a signal at d 6.82–6.91 ppm (singlet or doublet,
JHF 0.9 Hz), assignable to the H6 proton. The 13C
NMR spectra of diazepines 5a–c display signals for
the diazepine ring carbons at d 46.6–46.7 (d, C4, JCF
14.4–14.8 Hz), d 120.3–120.6 (C6), d 152.2–153.2 (d,
C5, JCF 3.3–3.5 Hz), d 157.7–157.8 (d, C2, JCF 217–
220 Hz), and d 172.7–174.1 (d, C7, JCF 14.9 Hz).

Diazepines 5a–c contain a fairly labile fluorine atom,
which has the ability to be changed to another func-
tional group or heterocyclic moiety. Thus, treatment
of compound 5b with excess morpholine gave 2-mor-
pholino-substituted diazepine 8b20 in 71% yield, while
treatment of diazepine 5c with anhydrous K2CO3 in
methanol gave 2-methoxy-substituted diazepine 9c
(39%)21 (Scheme 3).

The most probable mechanism of the formation of dia-
zepines 5a–c involves isomerization of ylides 2a–c into
azadienes 6a–c followed by [4+2]-cycloaddition of the
latter to azirines 1a–c to form compounds 7a–c (Scheme
2). Recently, the [2+4]-cycloaddition of methyl 2-(2,6-
dichlorophenyl)-2H-azirine-3-carboxylate to electron-
rich 2-azadienes has been reported.22,23 Under the action
of the base, 1,3-diazabicyclo[4.1.0]heptane derivatives
7a–c underwent ring expansion and dehydrofluorination
to give diazepines 5a–c. Furfural is an inactive dipolaro-
phile due to the electron-rich nature of the furan ring
and reacts poorly with ylides 2a–c. However, in the
absence of furfural, diazepines 5a–c are impossible to
isolate. At the same time, these products can be obtained
if furfural is added to the reaction mixture before chro-
matographic purification. From azirine 1c, using the
general procedure with addition of furfural after reac-
tion completion, compound 5c was obtained in 21%
yield. The role of furfural, which was used in the experi-
ments in an 11-fold excess, is to stabilize difluorides 7a–c
during chromatographic purification. Since it has the
same Rf in the hexane–ethyl acetate eluting system as
compounds 7a–c it prevents decomposition of the latter
on silica gel.

It should be noted that the yields of adducts of some 1,3-
dipolar cycloadditions of gem-difluoro-substituted aziri-
nium ylides 2 generated from 3-aryl-2H-azirines 1 and
difluorocarbene are frequently low, which may imply
the occurrence of side reactions.7,8 The resulting data
led us to conclude that this fact is associated with the
competitive isomerization of azirinium ylides into 1,1-
difluoro-2-aza-1,3-dienes. The latter compounds under
the reaction conditions, undergo [4+2]-cycloaddition to
the starting azirines to form diazabicyclo[4.1.0]heptane
derivatives like 7 that tend to decompose when isolated
by chromatography on silica gel. Chromatography with
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stabilizing additives followed by treatment with base
allows unstable compounds 7 to be converted into
relatively stable 2-fluoro-1,3-diazepines 5. The use of
two different azirines to realize cross-reaction of 1,3-
diazepine formation is under investigation.
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